• Home
  • Tags: Механика деформируемого твёрдого тела

ФИЗИКО-МЕХАНИЧЕСКИЕ СВОЙСТВА НЕТКАНЫХ МАТЕРИАЛОВ МЕДИЦИНСКОГО НАЗНАЧЕНИЯ НА ОСНОВЕ ПОЛИГИДРОКСИБУТИРАТА

ФГБОУ ВО Российский экономический университет имени Г.В. Плеханова

ФИЗИКО-МЕХАНИЧЕСКИЕ СВОЙСТВА НЕТКАНЫХ МАТЕРИАЛОВ МЕДИЦИНСКОГО НАЗНАЧЕНИЯ НА ОСНОВЕ ПОЛИГИДРОКСИБУТИРАТА

В настоящее время большой практический интерес представляет разработка и исследование нетканых волокнистых материалов медицинского назначения на основе биополимеров. Одним из наиболее перспективных методов получения нетканых материалов с высоко развитой поверхностью является электроформование (ЭФВ). Целью данной работы было рассмотрение особенностей структуры ультратонких волокон на основе поли-3-гидроксибутирата (ПГБ), которые формируют слой материала, и установление закономерностей их влияния на физико-механические свойства.

 Исследование позволило обобщить несколько ключевых факторов, обуславливающих структурную организацию в материале на уровнях: макроструктуры – укладки и взаимного расположения в пространстве элементов нетканого полотна (волокон); микроструктуры – ориентации полимерных молекул в материале.

 В исследовательской работе рассматривались различные параметры, характеризующие структуру нетканого материала и в значительной степени обуславливающие его физико-механические и химические свойства, что было подтверждено в ходе экспериментальной работы. Среди базовых показателей структурной организации в материале были выделены в качестве определяющих: удельная плотность волокон структуры, g; индекс ориентации волокон, ϕ; материалоёмкость - средняя плотность (масса единицы объема), δ. На основании полученных экспериментальных данных все образцы нетканого материала на основе ПГБ, получаемые методом ЭФВ в установленном интервале технологических параметров, допустимо разделить на три группы, достоверно описывающие свойства структуры материала: равномерное распределение волокон, среднее и хаотичное.

 Анализ механических характеристик материала свидетельствует об увеличении эластических свойств полимерного материала по сравнению с пленочными аналогами, что важно при формировании качества изделий медицинского назначения. В работе были установлены зависимости между параметрами структуры материала и показателями разрывной нагрузки, прочности, относительного разрывного удлинения, модуля упругости, что позволило сделать вывод о возможности задавать значения механических свойств еще на стадии изготовления нетканого материала.

 Полученный и обработанный массив данных подтверждает высокую перспективность и эффективность производства технологичных наномодифицированных защитных, фильтрующих, перевязочных текстильных материалов для медицинских целей.

Работа выполнена при финансовой поддержке РЭУ им. Г.В. Плеханова.

 

1.    Филатов Ю. Н. Электроформование волокнистых материалов (ЭФВ-процесс). М.: Нефть и Газ, 1997.

2.    Olkhov A.A., Tyubaeva P.M., Staroverova O.V., Mastalygina, E.E. Popov A.A., Ischenko A.A., Iordanskii A.L. Process optimization electrospinning fibrous material based оn polyhydroxybutyrate // AIP Conference Proceedings. 2016. V. 1736. doi: 10.1063/1.4949673.

3.    Ольхов А.А., Тюбаева П.М., А. В. Лобанов, О. А, Мокеров, С. Г. Карпова, А. Л. Иорданский Надмолекулярная структура ультратонких волокон полигидроксибутирата, модифицированных комплексом железа (III) с тетрафенилпорфирином // «Вестник технологического университета» 2017. Т.20. №17.

Экспериментально-вычислительное исследование динамических свойств и предельных характеристик конструкционных металлов и сплавов при высокоскоростном сдвиговом нагружении

АО "НПЦ газотурбостроения "Салют"

Экспериментально-вычислительное исследование динамических свойств и предельных характеристик конструкционных металлов и сплавов при высокоскоростном сдвиговом нагружении

При моделировании в механике процессов, связанных с высокоскоростным нагружением, а также развитием в конструкциях больших деформаций вплоть до разрушения, на первое место выходят экспериментально-вычислительным методы изучения механических свойств материалов. Кроме того, в работах, посвященных исследованию предельных характеристик различных металлов и сплавов [1], показана существенная зависимость последних от вида напряженного состояния.

Сегодня наиболее широко используемым экспериментальным методом идентификации динамических свойств материалов является метод Кольского с использованием разрезного стрежня Гопкинсона и его разнородные модификации [2]. Данный метод покрывает диапазон скоростей деформаций 100 ÷ 10000 1/с и в основном используется для построения диаграмм нагружения материала при динам1ическом сжатии и растяжении. Среди общего объема модификаций метода доля испытаний, на практике реализующих сдвиговое напряженно-деформированное состояние (НДС) в образцах, крайне важных для построения надежных критериев разрушения материалов, относительно мала, в особенности применительно к твердым металлам и сплавам.

Предлагаемый в работе способ испытаний на динамический сдвиг основан на классической схеме метода Кольского на одноосное сжатие, дополненной специальными переходниками из материала, близкого по свойствам к материалу мерных стержней, и исследуемым образцом в форме условного двутавра.

Такая конструкция позволяет реализовать в рабочей области образца НДС, близкое к однородному вплоть до разрушения в режимах простого (по деформациям) и чистого (по напряжениям) сдвига. В процессе испытания регистрируются импульсы (деформации) с мерных стержней, по которым в последствии при помощи приведенных в работе соотношений восстанавливаются величины напряжений, деформаций и скоростей деформаций в образце. Так, величина сдвигового напряжения оказывается пропорциональной отношению площади поперечного сечения стержня к площади поверхности сдвига образца, что, в виду малости последней, позволяет достигать в нем предельных значений деформаций и исследовать процесс разрушения.

Большим преимуществом данного подхода является возможность альтернативного измерения деформаций видимой поверхности образца при помощи систем цифровой корреляции изображений DIC (Digital Image Correlation), использующих видеосъемку высокоскоростными камерами.

 

1. Carney K.S., DuBois P.A., Buyuk M., Kan S. Generalized Three-Dimensional Definition Description and Derived Limits of the Triaxial Failure of Metals // J. Aerosp. Engrg. 2009. Vol. 22. Issue 3. P. 280-286.

2. Bragov A.M., Igumnov L.A., Konstantinov A.Yu., Lomunov A.K., Linvinchuk S.Yu. Use of Hopkinson Method and its Modifications in the USSR and Russa // Proceedings of Hopkinson Centenary Conference. Cambridge. 2014. P. 69-100.